Skip to main content
guest
Join
|
Help
|
Sign In
xenharmonic (microtonal wiki)
Home
guest
|
Join
|
Help
|
Sign In
Actions
Wiki Home
Projects
Recent Changes
Pages and Files
Members
Navigation
Introduction
Help
(
Conventions
)
Languages
Deutsch
English
Español
日本語
Connect
XA Facebook Group
XA IRC Chat
Practice
Instruments
Software
Pedagogy
Listen
Scores
Discussion
People
Projects
Theory
Orientation
General Theory
Mathematical Theory
Useful Tools
Lists and Galleries
Backing up this wiki
23-limit
Edit
0
4
…
4
Tags
23-limit
limit
prime limit
rank 9
Notify
RSS
Backlinks
Source
Print
Export (PDF)
In 23-limit
Just Intonation
, all ratios contain no prime factors higher than 23.
Ratios of 23 in the 23-odd limit include:
24/23 .. 73.681¢
23/22 .. 76.956¢
23/21 .. 157.493¢
26/23 .. 212.253¢
23/20 .. 241.961¢
23/19 .. 330.761¢
28/23 .. 340.552¢
23/18 .. 424.364¢
30/23 .. 459.994¢
23/17 .. 523.319¢
23/16 .. 628.274¢
34/23 .. 676.681¢
32/23 .. 571.726¢
23/15 .. 740.006¢
36/23 .. 775.636¢
23/14 .. 859.448¢
38/23 .. 869.239¢
40/23 .. 958.039¢
23/13 .. 987.747¢
42/23 ..1042.507¢
44/23 .. 1123.044¢
23/12 .. 1126.391¢
94edo
is the first
EDO
to be consistent in the 23-limit. The smallest EDO where the 23-limit is distinctly consistent, meaning each element of the tonality diamond is distinguished, is
282edo
.
See:
Harmonic Limit
,
19-limit
,
17-limit
Javascript Required
You need to enable Javascript in your browser to edit pages.
help on how to format text
Help
·
About
·
Pricing
·
Privacy
·
Terms
·
Support
Contributions to https://xenharmonic.wikispaces.com/ are licensed under a
Creative Commons Attribution Share-Alike Non-Commercial 3.0 License
.
Portions not contributed by visitors are Copyright 2018 Tangient LLC
TES: The largest network of teachers in the world
Turn off "Getting Started"
Home
...
Loading...
Ratios of 23 in the 23-odd limit include:
24/23 .. 73.681¢
23/22 .. 76.956¢
23/21 .. 157.493¢
26/23 .. 212.253¢
23/20 .. 241.961¢
23/19 .. 330.761¢
28/23 .. 340.552¢
23/18 .. 424.364¢
30/23 .. 459.994¢
23/17 .. 523.319¢
23/16 .. 628.274¢
34/23 .. 676.681¢
32/23 .. 571.726¢
23/15 .. 740.006¢
36/23 .. 775.636¢
23/14 .. 859.448¢
38/23 .. 869.239¢
40/23 .. 958.039¢
23/13 .. 987.747¢
42/23 ..1042.507¢
44/23 .. 1123.044¢
23/12 .. 1126.391¢
94edo is the first EDO to be consistent in the 23-limit. The smallest EDO where the 23-limit is distinctly consistent, meaning each element of the tonality diamond is distinguished, is 282edo.
See: Harmonic Limit, 19-limit, 17-limit